
e04 – Minimizing or Maximizing a Function e04lbc

nag opt bounds 2nd deriv (e04lbc)

1. Purpose

nag opt bounds 2nd deriv (e04lbc) is a comprehensive modified-Newton algorithm for finding:

– an unconstrained minimum of a function of several variables
– a minimum of a function of several variables subject to fixed upper and/or lower bounds on
the variables.

First and second derivatives are required. The function nag opt bounds 2nd deriv is intended for
objective functions which have continuous first and second derivatives (although it will usually work
even if the derivatives have occasional discontinuities).

2. Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_bounds_2nd_deriv(Integer n,
void (*objfun)(Integer n, double x[], double *objf,

double g[], Nag_Comm *comm),
void (*hessfun)(Integer n, double x[], double h[],

double hd[], Nag_Comm *comm),
Nag_BoundType bound, double bl[], double bu[],
double x[], double *objf, double g[],
Nag_E04_Opt *options, Nag_Comm *comm, NagError *fail)

3. Description

This function is applicable to problems of the form:

Minimize F (x1, x2, . . . , xn)
subject to lj ≤ xj ≤ uj, j = 1, 2, . . . , n.

Special provision is made for unconstrained minimization (i.e., problems which actually have no
bounds on the xj), problems which have only non-negativity bounds, and problems in which
l1 = l2 = . . . = ln and u1 = u2 = . . . = un. It is possible to specify that a particular xj

should be held constant. The user must supply a starting point, a function objfun to calculate the
value of F (x) and its first derivatives ∂F/∂xj at any point x, and a function hessfun to calculate
the second derivatives ∂2F/∂xi∂xj .

A typical iteration starts at the current point x where nz (say) variables are free from both their
bounds. The vector of first derivatives of F (x) with respect to the free variables, gz, and the
matrix of second derivatives with respect to the free variables, H , are obtained. (These both have
dimension nz.) The equations

(H + E)pz = −gz

are solved to give a search direction pz. (The matrix E is chosen so that H+E is positive-definite.)
pz is then expanded to an n-vector p by the insertion of appropriate zero elements; α is found such
that F (x + αp) is approximately a minimum (subject to the fixed bounds) with respect to α, and
x is replaced by x + αp. (If a saddle point is found, a special search is carried out so as to move
away from the saddle point.) If any variable actually reaches a bound, it is fixed and nz is reduced
for the next iteration.

There are two sets of convergence criteria – a weaker and a stronger. Whenever the weaker criteria
are satisfied, the Lagrange-multipliers are estimated for all active constraints. If any Lagrange-
multiplier estimate is significantly negative, then one of the variables associated with a negative
Lagrange-multiplier estimate is released from its bound and the next search direction is computed
in the extended subspace (i.e., nz is increased). Otherwise, minimization continues in the current

[NP3275/5/pdf] 3.e04lbc.1

nag opt bounds 2nd deriv NAG C Library Manual

subspace until the stronger criteria are satisfied. If at this point there are no negative or near-zero
Lagrange-multiplier estimates, the process is terminated.

If the user specifies that the problem is unconstrained, nag opt bounds 2nd deriv sets the lj to
−1010 and the uj to 10

10. Thus, provided that the problem has been sensibly scaled, no bounds
will be encountered during the minimization process and nag opt bounds 2nd deriv will act as an
unconstrained minimization algorithm.

4. Parameters
n

Input: the number n of independent variables.
Constraint: n ≥ 1.

objfun
objfun must evaluate the function F (x) and its first derivatives ∂F/∂xj at any point x.
(However, if the user does not wish to calculate F (x) or its first derivatives at a particular
x, there is the option of setting a parameter to cause nag opt bounds 2nd deriv to terminate
immediately.)

The specification for objfun is:

void objfun(Integer n, double x[], double *objf, double g[], Nag_Comm *comm)

n
Input: the number n of variables.

x[n]
Input: the point x at which the value of F , or F and ∂F/∂xj, are required.

objf
Output: objfun must set objf to the value of the objective function F at the
current point x. If it is not possible to evaluate F then objfun should assign a
negative value to comm->flag; nag opt bounds 2nd deriv will then terminate.

g[n]
Output: objfun must set g[j − 1] to the value of the first derivative ∂F/∂xj

at the current point x, for j = 1, 2, . . . , n. If it is not possible to evaluate
the first derivatives then objfun should assign a negative value to comm->flag;
nag opt bounds 2nd deriv will then terminate.

comm
Pointer to structure of type Nag Comm; the following members are relevant to
objfun.

flag – Integer
Output: if objfun resets comm->flag to some negative number then
nag opt bounds 2nd deriv will terminate immediately with the error
indicator NE USER STOP. If fail is supplied to nag opt bounds 2nd deriv,
fail.errnum will be set to the user’s setting of comm->flag.

first – Boolean
Input: will be set to TRUE on the first call to objfun and FALSE for all
subsequent calls.

3.e04lbc.2 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04lbc

nf – Integer
Input: the number of evaluations of the objective function; this value will
be equal to the number of calls made to objfun (including the current one).

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void * with a C compiler that defines void *
and char * otherwise.
Before calling nag opt bounds 2nd deriv these pointers may be allocated
memory by the user and initialized with various quantities for use by objfun
when called from nag opt bounds 2nd deriv.

Note: objfun should be tested separately before being used in conjunction with
nag opt bounds 2nd deriv. The array x must not be changed by objfun.

hessfun
hessfun must calculate the second derivatives of F (x) at any point x. (As with objfun there
is the option of causing nag opt bounds 2nd deriv to terminate immediately.)

The specification for hessfun is:

void hessfun(Integer n, double x[], double h[], double hd[], Nag_Comm *comm)

n
Input: the number n of variables.

x[n]
Input: the point x at which the second derivatives of F are required.

h[]
Output: hessfun must place the strict lower triangle of the second derivative
matrix of F (evaluated at the point x) in h, stored by rows, i.e., set

h[(i − 1)(i − 2)/2 + j − 1] = ∂2F

∂xi∂xj

∣∣∣∣
x

, for i = 2, 3, . . . , n; j = 1, 2, . . . , i − 1.

(The upper triangle is not required because the matrix is symmetric.) If it is
not possible to evaluate the elements of h then hessfun should assign a negative
value to comm->flag; nag opt bounds 2nd deriv will then terminate.

hd[n]
Input: the value of ∂F/∂xj at the point x, for j = 1, 2, . . . , n.
These values may be useful in the evaluation of the second derivatives.
Output: unless comm->flag is reset to a negative number hessfun must place the
diagonal elements of the second derivative matrix of F (evaluated at the point
x) in hd, i.e., set

hd[j − 1] = ∂2F

∂xj
2

∣∣∣∣
x

, for j = 1, 2, . . . , n.

If it is not possible to evaluate the elements of hd then hessfun should assign a
negative value to comm->flag; nag opt bounds 2nd deriv will then terminate.

[NP3275/5/pdf] 3.e04lbc.3

nag opt bounds 2nd deriv NAG C Library Manual

comm
Pointer to structure of type Nag Comm; the following members are relevant to
objfun.

flag – Integer
Output: if hessfun resets comm->flag to some negative number then
nag opt bounds 2nd deriv will terminate immediately with the error
indicator NE USER STOP. If fail is supplied to nag opt bounds 2nd deriv
fail.errnum will be set to the user’s setting of comm->flag.

first – Boolean
Input: will be set to TRUE on the first call to hessfun and FALSE for all
subsequent calls.

nf – Integer
Input: the number of calculations of the objective function; this value will
be equal to the number of calls made to hessfun including the current one.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void * with a C compiler that defines void *
and char * otherwise.
Before calling nag opt bounds 2nd deriv these pointers may be allocated
memory by the user and initialized with various quantities for use by
hessfun when called from nag opt bounds 2nd deriv.

Note: hessfun should be tested separately before being used in conjunction with
nag opt bounds 2nd deriv. The array x must not be changed by hessfun.

bound
Input: indicates whether the problem is unconstrained or bounded and, if it is bounded,
whether the facility for dealing with bounds of special forms is to be used. bound should be
set to one of the following values:

bound = Nag Bounds
if the variables are bounded and the user will be supplying all the lj and uj individually.

bound = Nag NoBounds
if the problem is unconstrained.

bound = Nag BoundsZero
if the variables are bounded, but all the bounds are of the form 0 ≤ xj .

bound = Nag BoundsEqual
if all the variables are bounded, and l1 = l2 = . . . = ln and u1 = u2 = . . . = un.

Constraint: bound = Nag Bounds, Nag NoBounds, Nag BoundsZero or Nag BoundsEqual.

bl[n]
Input: the lower bounds lj.
If bound is set to Nag Bounds, the user must set bl[j − 1] to lj , for j = 1, 2, . . . , n. (If a lower
bound is not required for any xj , the corresponding bl[j − 1] should be set to a large negative
number, e.g., −1010.)
If bound is set to Nag BoundsEqual, the user must set bl[0] to l1; nag opt bounds 2nd deriv
will then set the remaining elements of bl equal to bl[0].
If bound is set to Nag NoBounds or Nag BoundsZero, bl will be initialized by
nag opt bounds 2nd deriv.
Output: the lower bounds actually used by nag opt bounds 2nd deriv, e.g., if bound =
Nag BoundsZero, bl[0] = bl[1] = . . . = bl[n − 1] = 0.0.

bu[n]
Input: the upper bounds uj .
If bound is set to Nag Bounds, the user must set bu[j − 1] to uj, for j = 1, 2, . . . , n. (If an
upper bound is not required for any xj , the corresponding bu[j − 1] should be set to a large
positive number, e.g., 1010.)

3.e04lbc.4 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04lbc

If bound is set to Nag BoundsEqual, the user must set bu[0] to u1; nag opt bounds 2nd deriv
will then set the remaining elements of bu equal to bu[0].
If bound is set to Nag NoBounds or Nag BoundsZero, bu will be initialized by
nag opt bounds 2nd deriv.
Output: the upper bounds actually used by nag opt bounds 2nd deriv, e.g., if bound =
Nag BoundsZero, bu[0] = bu[1] = . . . = bu[n − 1] = 1010.

x[n]
Input: x[j − 1] must be set to a guess at the jth component of the position of the minimum,
for j = 1, 2, . . . , n.
Output: the final point x∗. Thus, if fail.code = NE NOERROR on exit, x[j − 1] is the jth
component of the estimated position of the minimum.

objf
Output: the function value at the final point given in x.

g[n]
Output: the first derivative vector corresponding to the final point in x. The elements of g
corresponding to free variables should normally be close to zero.

options
Input/Output: a pointer to a structure of type Nag E04 Opt whose members are optional
parameters for nag opt bounds 2nd deriv. These structure members offer the means of
adjusting some of the parameter values of the algorithm and on output will supply further
details of the results. A description of the members of options is given below in Section 7.
If any of these optional parameters are required then the structure options should be
declared and initialized by a call to nag opt init (e04xxc) and supplied as an argument to
nag opt bounds 2nd deriv. However, if the optional parameters are not required the NAG
defined null pointer, E04 DEFAULT, can be used in the function call.

comm
Input/Output: structure containing pointers for communication to user-supplied functions;
see the above description of objfun and hessfun for details. If the user does not need to
make use of this communication feature the null pointer NAGCOMM NULL may be used in the
call to nag opt bounds 2nd deriv; comm will then be declared internally for use in calls to
user-supplied functions.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.
Users are recommended to declare and initialize fail and set fail.print = TRUE for this
function.

4.1. Description of Printed Output

Intermediate and final results are printed out by default. The level of printed output can be
controlled by the user with the structure member options.print level (see Section 7.2). The default
print level of Nag Soln Iter provides a single line of output at each iteration and the final result.
This section describes the default printout produced by nag opt bounds 2nd deriv.
The following line of output is produced at each iteration. In all cases the values of the quantities
printed are those in effect on completion of the given iteration.

Itn the iteration count, k.

Nfun the cumulative number of calls made to objfun.

Objective the value of the objective function, F (x(k))

Norm g the Euclidean norm of the projected gradient vector, ‖gz(x
(k))‖.

Norm x the Euclidean norm of x(k).

Norm(x(k-1)-x(k)) the Euclidean norm of x(k−1) − x(k).

Step the step α(k) taken along the computed search direction p(k).

Cond H the ratio of the largest to the smallest element of the diagonal factor D of
the projected Hessian matrix. This quantity is usually a good estimate of

[NP3275/5/pdf] 3.e04lbc.5

nag opt bounds 2nd deriv NAG C Library Manual

the condition number of the projected Hessian matrix. (If no variables are
currently free, this value will be zero.)

PosDef indicates whether the second derivative matrix H for the current subspace
is positive definite (Yes) or not (No).

The printout of the final result consists of:

x the final point, x∗.

g the final projected gradient vector, gz(x
∗).

Status the final state of the variable with respect to its bound(s).

5. Comments

A list of possible error exits and warnings from nag opt bounds 2nd deriv is given in Section 8.
Details of timing, scaling, accuracy, and the use of nag opt bounds 2nd deriv for unconstrained
minimization are given in Section 9.

6. Example 1

This example minimizes the function

F = (x1 + 10x2)
2 + 5(x3 − x4)

2 + (x2 − 2x3)
4 + 10(x1 − x4)

4

subject to the bounds

1 ≤ x1 ≤ 3
−2 ≤ x2 ≤ 0
1 ≤ x4 ≤ 3

starting from the initial guess (1.46, −0.82, 0.57, 1.21)T .
This example shows the simple use of nag opt bounds 2nd deriv where default values are used for
all optional parameters. An example showing the use of optional parameters is given in Section
12. There is one example program file, the main program of which calls both examples. The main
program and Example 1 are given below.

6.1. Program Text

/* nag_opt_bounds_2nd_deriv(e04lbc) Example Program.
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nage04.h>

#define NMAX 4

#ifdef NAG_PROTO
static void funct(Integer n, double xc[], double *fc, double gc[],

Nag_Comm *comm);
static void hess(Integer n, double xc[], double fhesl[],

double fhesd[], Nag_Comm *comm);
static void ex1(void);
static void ex2(void);
#else
static void funct();
static void hess();

3.e04lbc.6 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04lbc

static void ex1();
static void ex2();
#endif

#ifdef NAG_PROTO
static void funct(Integer n, double xc[], double *fc, double gc[],

Nag_Comm *comm)
#else

static void funct(n,xc,fc,gc,comm)
Integer n;
double xc[],*fc,gc[];
Nag_Comm *comm;

#endif
{
/* Function to evaluate objective function and its 1st derivatives. */
double term1, term1_sq;
double term2, term2_sq;
double term3, term3_sq, term3_cu;
double term4, term4_sq, term4_cu;

term1 = xc[0] + 10.0*xc[1];
term1_sq = term1*term1;

term2 = xc[2] - xc[3];
term2_sq = term2*term2;

term3 = xc[1] - 2.0*xc[2];
term3_sq = term3*term3;
term3_cu = term3*term3_sq;

term4 = xc[0] - xc[3];
term4_sq = term4*term4;
term4_cu = term4_sq*term4;

*fc = term1_sq + 5.0*term2_sq
+ term3_sq*term3_sq + 10.0*term4_sq*term4_sq;

gc[0] = 2.0*term1 + 40.0*term4_cu;
gc[1] = 20.0*term1 + 4.0*term3_cu;
gc[2] = 10.0*term2 - 8.0*term3_cu;
gc[3] = -10.0*term2 - 40.0*term4_cu;

}
/* funct */
#ifdef NAG_PROTO

static void hess(Integer n, double xc[], double fhesl[],
double fhesd[], Nag_Comm *comm)

#else
static void hess(n, xc, fhesl,fhesd, comm)
Integer n;
double xc[],fhesl[];
double fhesd[];
Nag_Comm *comm;

#endif
{
/* Routine to evaluate 2nd derivatives */
double term3_sq;
double term4_sq;

term3_sq = (xc[1] - 2.0*xc[2])*(xc[1] - 2.0*xc[2]);
term4_sq = (xc[0] - xc[3])*(xc[0] - xc[3]);

fhesd[0] = 2.0 + 120.0*term4_sq;
fhesd[1] = 200.0 + 12.0*term3_sq;
fhesd[2] = 10.0 + 48.0*term3_sq;
fhesd[3] = 10.0 + 120.0*term4_sq;

fhesl[0] = 20.0;
fhesl[1] = 0.0;
fhesl[2] = -24.0*term3_sq;

[NP3275/5/pdf] 3.e04lbc.7

nag opt bounds 2nd deriv NAG C Library Manual

fhesl[3] = -120.0*term4_sq;
fhesl[4] = 0.0;
fhesl[5] = -10.0;

}
/* hess */

main()
{
/* Two examples are called, ex1() which uses the
* default settings to solve the problem and
* ex2() which solves the same problem with
* some optional parameters set by the user.
*/

Vprintf("e04lbc Example Program Results.\n");
ex1();
ex2();
exit(EXIT_SUCCESS);

}

#ifdef NAG_PROTO
static void ex1(void)
#else
static void ex1()
#endif
{
double x[NMAX];
double bl[NMAX], bu[NMAX], g[NMAX];
double f;

Integer n = NMAX;

static NagError fail;

/* Function Body */

fail.print = TRUE;
Vprintf("\ne04lbc example 1: no option setting.\n");

x[0] = 1.46;
x[1] = -.82;
x[2] = .57;
x[3] = 1.21;

bl[0] = 1.0;
bu[0] = 3.0;
bl[1] = -2.0;
bu[1] = 0.0;

/* x[2] is not bounded, so we set bl[2] to a large negative
* number and bu[2] to a large positive number
*/

bl[2] = -1e6;
bu[2] = 1e6;
bl[3] = 1.0;
bu[3] = 3.0;

/* Set up starting point */
x[0] = 3.0;
x[1] = -1.0;
x[2] = 0.0;
x[3] = 1.0;

e04lbc(n, funct, hess, Nag_Bounds, bl, bu, x, &f, g,
E04_DEFAULT, NAGCOMM_NULL, &fail);

}
/* ex1 */

3.e04lbc.8 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04lbc

6.2. Program Data

None; but there is an example data file which contains the optional parameter values for Example
2 below.

6.3. Program Results

e04lbc Example Program Results.

e04lbc example 1: no option setting.

Parameters to e04lbc

Number of variables........... 4

optim_tol............... 1.05e-07 linesearch_tol.......... 9.00e-01
step_max................ 1.00e+05 max_iter................ 200
print_level.........Nag_Soln_Iter machine precision....... 1.11e-16
deriv_check............. TRUE
outfile................. stdout

Memory allocation:
state................... Nag
hesl.................... Nag hesd................... Nag

Results from e04lbc:

Iteration results:
Itn Nfun Objective Norm g Norm x Norm step Step CondH PosDef
0 4 2.1500e+02 1.4e+02 3.3e+00 3.8e+00 Yes
1 5 1.6306e+02 3.2e+02 3.2e+00 7.9e-01 1.0e+00 9.5e+00 Yes
2 6 3.4386e+01 9.5e+01 2.6e+00 6.7e-01 1.0e+00 4.3e+00 Yes
3 7 8.8929e+00 2.8e+01 2.2e+00 4.5e-01 1.0e+00 4.2e+00 Yes
4 8 3.8068e+00 8.4e+00 1.9e+00 3.0e-01 1.0e+00 4.6e+00 Yes
5 9 2.7680e+00 2.6e+00 1.8e+00 2.0e-01 1.0e+00 9.6e+00 Yes
6 10 2.5381e+00 8.5e-01 1.6e+00 1.5e-01 1.0e+00 1.9e+01 Yes
7 11 2.4702e+00 3.6e-01 1.6e+00 1.2e-01 1.0e+00 2.7e+01 Yes
8 12 2.4338e+00 2.0e-04 1.5e+00 1.2e-01 5.3e-01 4.4e+00 Yes
9 13 2.4338e+00 1.3e-09 1.5e+00 3.6e-06 1.0e+00 4.4e+00 Yes

Final solution:
10 14 2.4338e+00 1.3e-09 1.5e+00 2.4e-11 1.0e+00 4.4e+00 Yes

Variable x g Status
1 1.0000e+00 2.9535e-01 Lower Bound
2 -8.5233e-02 -5.8675e-10 Free
3 4.0930e-01 1.1735e-09 Free
4 1.0000e+00 5.9070e+00 Lower Bound

7. Optional Parameters

A number of optional input and output parameters to nag opt bounds 2nd deriv are available
through the structure argument options, type Nag E04 Opt. A parameter may be selected by
assigning an appropriate value to the relevant structure member; those parameters not selected
will be assigned default values. If no use is to be made of any of the optional parameters the
user should use the NAG defined null pointer, E04 DEFAULT, in place of options when calling
nag opt bounds 2nd deriv; the default settings will then be used for all parameters.

Before assigning values to options directly the structure must be initialized by a call to the function
nag opt init (e04xxc). Values may then be assigned to the structure members in the normal C
manner.

Option settings may also be read from a text file using the function nag opt read (e04xyc) in which
case initialization of the options structure will be performed automatically if not already done. Any
subsequent direct assignment to the options structure must not be preceded by initialization.

If assignment of functions and memory to pointers in the options structure is required, then this

[NP3275/5/pdf] 3.e04lbc.9

nag opt bounds 2nd deriv NAG C Library Manual

must be done directly in the calling program; they cannot be assigned using using nag opt read
(e04xyc).

7.1. Optional Parameter Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for
nag opt bounds 2nd deriv together with their default values where relevant. The number ε is a
generic notation for machine precision (see nag machine precision (X02AJC)).

Boolean list TRUE
Nag PrintType print level Nag Soln Iter
char outfile[80] stdout
void (*print fun)() NULL
Boolean deriv check TRUE
Integer max iter 50n
double optim tol 10

√
ε

double linesearch tol 0.9 (0.0 if n = 1)
double step max 100000.0
Integer *state size n
double *hesl size max(n(n−1)/2, 1)
double *hesd size n
Integer iter
Integer nf

7.2. Description of Optional Parameters

list – Boolean Default = TRUE
Input: if options.list = TRUE the parameter settings in the call to nag opt bounds 2nd deriv
will be printed.

print level – Nag PrintType Default = Nag Soln Iter
Input: the level of results printout produced by nag opt bounds 2nd deriv. The following
values are available.

Nag NoPrint No output.

Nag Soln The final solution.

Nag Iter One line of output for each iteration.

Nag Soln Iter The final solution and one line of output for each iteration.

Nag Soln Iter Full The final solution and detailed printout at each iteration.

Details of each level of results printout are described in Section 7.3.
Constraint: options.print level = Nag NoPrint, Nag Soln, Nag Iter, Nag Soln Iter or
Nag Soln Iter Full.

outfile – char[80] Default = stdout

Input: the name of the file to which results should be printed. If options.outfile[0] = ’\0’ then
the stdout stream is used.

print fun – pointer to function Default = NULL
Input: printing function defined by the user; the prototype of print fun is
void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

See Section 7.3.1 below for further details.

deriv check – Boolean Default = TRUE
Input: if options.deriv check = TRUE a check of the derivatives defined by objfun and
hessfun will be made at the starting point x. The derivative check is carried out by calls
to nag opt check deriv (e04hcc) and nag opt check 2nd deriv (e04hdc). A starting point of
x = 0 or x = 1 should be avoided if this test is to be meaningful, if either of these starting
points is necessary then nag opt check deriv (e04hcc) should be used to check objfun, and
nag opt check 2nd deriv (e04hdc) used to check hessfun, at a different point prior to calling
nag opt bounds 2nd deriv.

3.e04lbc.10 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04lbc

max iter – Integer Default = 50n
Input: the limit on the number of iterations allowed before termination.
Constraint: options.max iter ≥ 0.

optim tol – double Default = 10
√

ε

Input: the accuracy in x to which the solution is required.
If xtrue is the true value of x at the minimum, then xsol, the estimated position prior to a
normal exit, is such that

‖xsol − xtrue‖ < optim tol× (1.0 + ‖xtrue‖),

where ‖y‖ =

√√√√
n∑

j=1

y2
j . For example, if the elements of xsol are not much larger than 1.0 in

modulus and if optim tol is set to 10−5, then xsol is usually accurate to about 5 decimal
places. (For further details see Section 9.3.)
If the problem is scaled roughly as described in Section 9.2 and ε is the machine precision,
then

√
ε is probably the smallest reasonable choice for optim tol. (This is because, normally,

to machine accuracy, F (x +
√

εej) = F (x) where ej is any column of the identity matrix.)
Constraint: ε ≤ options.optim tol < 1.0.

linesearch tol – double Default = 0.9 if n > 1, and 0.0 otherwise
Input: every iteration of nag opt bounds 2nd deriv involves a linear minimization (i.e.,
minimization of F (x + αp) with respect to α). linesearch tol specifies how accurately these
linear minimizations are to be performed. The minimum with respect to α will be located
more accurately for small values of linesearch tol (say 0.01) than for large values (say 0.9).
Although accurate linear minimizations will generally reduce the number of iterations
performed by nag opt bounds 2nd deriv, they will increase the number of function evaluations
required for each iteration. On balance, it is usually more efficient to perform a low accuracy
linear minimization.
A smaller value such as 0.01 may be worthwhile:

(a) if objfun takes so little computer time that it is worth using extra calls of objfun to
reduce the number of iterations and associated matrix calculations

(b) if calls to hessfun are expensive compared with calls to objfun.

(c) if F (x) is a penalty or barrier function arising from a constrained minimization problem
(since such problems are very difficult to solve).

If n = 1, the default for linesearch tol = 0.0 (if the problem is effectively 1-dimensional then
linesearch tol should be set to 0.0 by the user even though n > 1; i.e., if for all except one of
the variables the lower and upper bounds are equal).
Constraint: 0.0 ≤ options.linesearch tol < 1.0.

step max – double Default = 100000.0
Input: an estimate of the Euclidean distance between the solution and the starting point
supplied by the user. (For maximum efficiency a slight overestimate is preferable.)
nag opt bounds 2nd deriv will ensure that, for each iteration,

√√√√
n∑

j=1

[
x

(k)
j − x

(k−1)
j

]2

≤ step max,

where k is the iteration number. Thus, if the problem has more than one solution,
nag opt bounds 2nd deriv is most likely to find the one nearest the starting point. On difficult
problems, a realistic choice can prevent the sequence of x(k) entering a region where the
problem is ill-behaved and can also help to avoid possible overflow in the evaluation of F (x).
However, an underestimate of step max can lead to inefficiency.
Constraint: options.step max ≥ options.optim tol.

[NP3275/5/pdf] 3.e04lbc.11

nag opt bounds 2nd deriv NAG C Library Manual

state – Integer * Default memory = n

Output: state contains information about which variables are on their bounds and which are
free at the final point given in x. If xj is:

(a) fixed on its upper bound, state[j − 1] is −1;
(b) fixed on its lower bound, state[j − 1] is −2;
(c) effectively a constant (i.e., lj = uj), state[j − 1] is −3;
(d) free, state[j − 1] gives its position in the sequence of free variables.

hesl – double * Default memory = max(n(n−1)/2, 1)
hesd – double * Default memory = n

Output: during the determination of a direction pz (see Section 3), H+E is decomposed into
the product LDLT , where L is a unit lower triangular matrix and D is a diagonal matrix.
(The matrices H , E, L and D are all of dimension nz, where nz is the number of variables
free from their bounds. H consists of those rows and columns of the full second derivative
matrix which relate to free variables. E is chosen so that H + E is positive-definite.)
hesl and hesd are used to store the factors L and D. The elements of the strict lower triangle
of L are stored row by row in the first nz(nz − 1)/2 positions of hesl. The diagonal elements
of D are stored in the first nz positions of hesd.
In the last factorization before a normal exit, the matrix E will be zero, so that hesl and hesd
will contain, on exit, the factors of the final second derivative matrix H . The elements of hesd
are useful for deciding whether to accept the result produced by nag opt bounds 2nd deriv
(see Section 9).

iter – Integer
Output: the number of iterations which have been performed in nag opt bounds 2nd deriv.

nf – Integer
Output: the number of times the residuals have been evaluated (i.e., number of calls of
objfun).

7.3. Description of Printed Output

The level of printed output can be controlled by the user with the structure members options.list
and options.print level (see Section 7.2). If list = TRUE then the parameter values to
nag opt bounds 2nd deriv are listed, whereas the printout of results is governed by the value of
print level. The default of print level = Nag Soln Iter provides a single line of output at each
iteration and the final result. This section describes all of the possible levels of results printout
available from nag opt bounds 2nd deriv.

When print level=Nag Iter orNag Soln Iter the following line of output is produced on completion
of each iteration.

Itn the iteration count, k.

Nfun the cumulative number of calls made to objfun.

Objective the value of the objective function, F (x(k))

Norm g the Euclidean norm of the projected gradient vector, ‖gz(x
(k))‖.

Norm x the Euclidean norm of x(k).

Norm(x(k-1)-x(k)) the Euclidean norm of x(k−1) − x(k).

Step the step α(k) taken along the computed search direction p(k).

Cond H the ratio of the largest to the smallest element of the diagonal factor D of
the projected Hessian matrix. This quantity is usually a good estimate of
the condition number of the projected Hessian matrix. (If no variables are
currently free, this value will be zero.)

PosDef indicates whether the second derivative matrix H for the current subspace
is positive definite (Yes) or not (No).

3.e04lbc.12 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04lbc

When options.print level = Nag Soln Iter Full more detailed results are given at each iteration.
Additional values output are

x the current point x(k).

g the current projected gradient vector, gz(x
(k)).

Status the current state of the variable with respect to its bound(s).

If print level = Nag Soln or Nag Soln Iter or Nag Soln Iter Full the final result is printed out. This
consists of:

x the final point, x∗.

g the final projected gradient vector, gz(x
∗).

Status the final state of the variable with respect to its bound(s).

If print level = Nag NoPrint then printout will be suppressed; the user can print the final solution
when nag opt bounds 2nd deriv returns to the calling program.

7.3.1. Output of Results via a User-defined Printing Function

Users may also specify their own print function for output of iteration results and the final solution
by use of the options.print fun function pointer, which has prototype

void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

The rest of this section can be skipped if the default printing facilities provide the required
functionality.

When a user-defined function is assigned to options.print fun this will be called in preference to the
internal print function of nag opt bounds 2nd deriv. Calls to the user-defined function are again
controlled by means of the options.print level member. Information is provided through st and
comm, the two structure arguments to print fun.

If comm->it prt= TRUE then the results on completion of an iteration of nag opt bounds 2nd deriv
are contained in the members of st. If comm->sol prt = TRUE then the final results from
nag opt bounds 2nd deriv, including details of the final iteration, are contained in the members
of st. In both cases, the same members of st are set, as follows:

iter – Integer
the current iteration count, k, if comm->it prt = TRUE; the final iteration count, k, if
comm->sol prt = TRUE.

n – Integer
the number of variables.

x – double *
the co-ordinates of the point x(k).

f – double
the value of the objective function at x(k).

g – double *
the value of ∂F/∂xj at x(k), j = 1, 2, . . . , n.

gpj norm – double
the Euclidean norm of the projected gradient gz at x(k).

step – double
the step α(k) taken along the search direction p(k).

cond – double
the estimate of the condition number of the projected Hessian matrix, see Section 7.3.

xk norm
the Euclidean norm of x(k−1) − x(k).

[NP3275/5/pdf] 3.e04lbc.13

nag opt bounds 2nd deriv NAG C Library Manual

state – Integer *
the status of variables xj , j = 1, 2, . . . , n, with respect to their bounds. See Section 7.2 for a
description of the possible status values.

posdef – Boolean
will be TRUE if the second derivative matrix for the current subspace, H , is positive-definite,
and FALSE otherwise.

nf – Integer
the cumulative number of calls made to objfun.

The relevant members of the structure comm are:

it prt – Boolean
will be TRUE when the print function is called with the results of the current iteration.

sol prt – Boolean
will be TRUE when the print function is called with the final result.

user – double *
iuser – Integer *
p – Pointer

pointers for communication of user information. If used they must be allocated memory
by the user either before entry to nag opt bounds 2nd deriv or during a call to objfun or
print fun. The type Pointer will be void * with a C compiler that defines void * and char
* otherwise.

8. Error Indications and Warnings

NE USER STOP
User requested termination, user flag value = 〈value〉.
This exit occurs if the user sets comm->flag to a negative value in objfun or hessfun. If fail
is supplied, the value of fail.errnum will be the same as the user’s setting of comm->flag.

NE INT ARG LT
On entry, n must not be less than 1: n = 〈value〉.

NE BOUND
The lower bound for variable 〈value〉 (array element bl[〈value〉]) is greater than the upper
bound.

NE DERIV ERRORS
Large errors were found in the derivatives of the objective function.

NE OPT NOT INIT
Options structure not initialized.

NE BAD PARAM
On entry, parameter bound had an illegal value.
On entry, parameter options.print level had an illegal value.

NE 2 REAL ARG LT
On entry, options.step max = 〈value〉 while options.optim tol = 〈value〉. These parameters
must satisfy step max ≥ optim tol.

NE INVALID INT RANGE 1
Value 〈value〉 given to options.max iter is not valid.
Correct range is max iter ≥ 0.

NE INVALID REAL RANGE EF
Value 〈value〉 given to options.optim tol is not valid.
Correct range is ε ≤ optim tol < 1.0.

NE INVALID REAL RANGE FF
Value 〈value〉 given to options.linesearch tol is not valid.
Correct range is 0.0 ≤ linesearch tol < 1.0.

3.e04lbc.14 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04lbc

NE ALLOC FAIL
Memory allocation failed.

When one of the above exits occurs, no values will have been assigned by nag opt bounds 2nd deriv
to objf or to the elements of g, options.state, options.hesl, or options.hesd.

NW TOO MANY ITER
The maximum number of iterations, 〈value〉, have been performed.
If steady reductions in F (x), were monitored up to the point where this exit occurred, then the
exit probably occurred simply because options.max iter was set too small, so the calculations
should be restarted from the final point held in x. This exit may also indicate that F (x) has
no minimum.

NW COND MIN
The conditions for a minimum have not all been satisfied, but a lower point could not be
found.

Provided that, on exit, the first derivatives of F (x) with respect to the free variables are
sufficiently small, and that the estimated condition number of the second derivative matrix
is not too large, this error exit may simply mean that, although it has not been possible
to satisfy the specified requirements, the algorithm has in fact found the minimum as far
as the accuracy of the machine permits. This could be because options.optim tol has been
set so small that rounding error in objfun makes attainment of the convergence conditions
impossible.

If the estimated condition number of the second derivative matrix at the final point is large,
it could be that the final point is a minimum but that the smallest eigenvalue of the second
derivative matrix is so close to zero that it is not possible to recognize the point as a minimum.

NE INTERNAL ERROR
An internal error has occurred in this function. Check the function call and any array sizes.
If the call is correct then please consult NAG for assistance.

NW LAGRANGE MULT ZERO
All the Lagrange-multiplier estimates which are not indisputably positive lie close to zero.

However, it is impossible either to continue minimizing on the current subspace or to find a
feasible lower point by releasing and perturbing any of the fixed variables. The user should
investigate as for NW COND MIN.

NE NOT APPEND FILE
Cannot open file 〈string〉 for appending.

NE WRITE ERROR
Error occurred when writing to file 〈string〉.

NE NOT CLOSE FILE
Cannot close file 〈string〉.

An exit of fail.code = NW TOO MANY ITER, NW LAGRANGE MULT ZERO or
NW COND MIN may also be caused by mistakes in objfun, by the formulation of the problem or
by an awkward function. If there are no such mistakes, it is worth restarting the calculations from
a different starting point (not the point at which the failure occurred) in order to avoid the region
which caused the failure.

9. Further Comments

9.1. Timing

The number of iterations required depends on the number of variables, the behaviour of F (x),
the accuracy demanded and the distance of the starting point from the solution. The number of
multiplications performed in an iteration of nag opt bounds 2nd deriv is n3

z/6+O(n2
z). In addition,

each iteration makes one call of hessfun and at least one call of objfun. So, unless F (x) and its

[NP3275/5/pdf] 3.e04lbc.15

nag opt bounds 2nd deriv NAG C Library Manual

derivatives can be evaluated very quickly, the run time will be dominated by the time spent in
objfun.

9.2. Scaling

Ideally, the problem should be scaled so that, at the solution, F (x) and the corresponding values of
the xj are each in the range (−1,+1), and so that at points one unit away from the solution, F (x)
differs from its value at the solution by approximately one unit. This will usually imply that the
Hessian matrix at the solution is well conditioned. It is unlikely that the user will be able to follow
these recommendations very closely, but it is worth trying (by guesswork), as sensible scaling will
reduce the difficulty of the minimization problem, so that nag opt bounds 2nd deriv will take less
computer time.

9.3. Accuracy

A successful exit (fail.code = NE NOERROR) is made from nag opt bounds 2nd deriv when H(k)

is positive-definite and when (B1, B2 and B3) or B4 hold, where

B1 ≡ α(k) × ‖p(k)‖ < (optim tol+
√

ε)× (1.0 + ‖x(k)‖)
B2 ≡ |F (k) − F (k−1)| < (optim tol2 + ε)× (1.0 + |F (k)|)
B3 ≡ ‖g(k)

z ‖ < (ε1/3 + optim tol)× (1.0 + |F (k)|)
B4 ≡ ‖g(k)

z ‖ < 0.01×
√

ε.

(Quantities with superscript k are the values at the kth iteration of the quantities mentioned in
Section 3; ε is the machine precision, ‖.‖ denotes the Euclidean norm and optim tol is described
in Section 7.)

If fail.code = NE NOERROR, then the vector in x on exit, xsol, is almost certainly an estimate of
the position of the minimum, xtrue, to the accuracy specified by optim tol.

If fail.code = NW COND MIN or NW LAGRANGE MULT ZERO, xsol may still be a good
estimate of xtrue, but the following checks should be made. Let the largest of the first nz elements
of the optional parameter hesd be hesd[b], let the smallest be hesd[s], and define κ = hesd[b] /
hesd[s]. The scalar κ is usually a good estimate of the condition number of the projected Hessian
matrix at xsol. If

(a) the sequence {F (x(k))} converges to F (xsol) at a superlinear or fast linear rate,

(b) ‖gz(xsol)‖2 < 10.0× ε, and

(c) κ < 1.0/‖gz(xsol)‖,

then it is almost certain that xsol is a close approximation to the position of a minimum. When
(b) is true, then usually F (xsol) is a close approximation to F (xtrue). The quantities needed for
these checks are all available in the results printout from nag opt bounds 2nd deriv; in particular
the final value of Cond H gives κ.
Further suggestions about confirmation of a computed solution are given in the Chapter
Introduction.

9.4. Unconstrained Minimization

If a problem is genuinely unconstrained and has been scaled sensibly, the following points apply:

(a) nz will always be n,

(b) the optional parameters hesl and hesd will be factors of the full approximate second derivative
matrix with elements stored in the natural order,

(c) the elements of g should all be close to zero at the final point,

(d) the Status values given in the printout from nag opt bounds 2nd deriv, and in the optional
parameter state on exit are unlikely to be of interest (unless they are negative, which would
indicate that the modulus of one of the xj has reached 10

10 for some reason),

(e) Norm g simply gives the norm of the first derivative vector.

3.e04lbc.16 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04lbc

10. References

Gill P E and Murray W (1974) Safeguarded steplength algorithms for optimization using descent
methods National Physical Laboratory Report NAC 37.

Gill P E and Murray W (1974) Newton-type methods for unconstrained and linearly constrained
optimization Mathematical Programming 7 311–350.

Gill P E and Murray W (1976) Minimization subject to bounds on the variables National Physical
Laboratory Report NAC 72.

11. See Also

nag opt bounds no deriv (e04jbc)
nag opt bounds deriv (e04kbc)
nag opt init (e04xxc)
nag opt read (e04xyc)
nag opt free (e04xzc)

12. Example 2

Example 2 solves the same problem as Example 1 but shows the use of certain optional parameters.
The options structure is declared and four option values are read from a data file by use of
nag opt read (e04xyc). The memory freeing function nag opt free (e04xzc) is used to free the
memory assigned to the pointers in the option structure. Users should not use the standard C
function free() for this purpose.

12.1. Program Text

static void ex2(void)
#else
static void ex2()
#endif
{
double x[NMAX];
double bl[NMAX], bu[NMAX], g[NMAX];
double f;

Integer n = NMAX;

Nag_Comm comm;
Nag_E04_Opt options;
static NagError fail, fail2;
Boolean print;

/* Function Body */

fail.print = TRUE;
Vprintf("\n\ne04lbc example 2: using option setting.\n");

x[0] = 1.46;
x[1] = -.82;
x[2] = .57;
x[3] = 1.21;

bl[0] = 1.0;
bu[0] = 3.0;
bl[1] = -2.0;
bu[1] = 0.0;

/* x[2] is not bounded, so we set bl[2] to a large negative
* number and bu[2] to a large positive number
*/

bl[2] = -1e6;
bu[2] = 1e6;
bl[3] = 1.0;
bu[3] = 3.0;

/* Set up starting point */

[NP3275/5/pdf] 3.e04lbc.17

nag opt bounds 2nd deriv NAG C Library Manual

x[0] = 3.0;
x[1] = -1.0;
x[2] = 0.0;
x[3] = 1.0;

print = TRUE;
e04xyc("e04lbc", "stdin", &options, print, "stdout", &fail);
e04lbc(n, funct, hess, Nag_Bounds, bl, bu, x, &f, g,

&options, &comm, &fail);

/* Free memory allocated by e04kbc to pointers hesd, hesl and state */
fail2.print = TRUE;
e04xzc(&options, "all", &fail2);
if (fail.code != NE_NOERROR && fail.code != NW_COND_MIN ||

fail2.code != NE_NOERROR) exit(EXIT_FAILURE);
} /* ex2 */

12.2. Program Data

e04lbc Example Program Data

begin e04lbc
print_level = Nag_Soln

end

12.3. Program Results

Optional parameter setting for e04lbc.

Option file: stdin

print_level set to Nag_Soln

Parameters to e04lbc

Number of variables........... 4

optim_tol............... 1.05e-07 linesearch_tol.......... 9.00e-01
step_max................ 1.00e+05 max_iter................ 200
print_level......... Nag_Soln machine precision....... 1.11e-16
deriv_check............. TRUE
outfile................. stdout

Memory allocation:
state................... Nag
hesl.................... Nag hesd................... Nag

Final solution:
Itn Nfun Objective Norm g Norm x Norm step Step CondH PosDef
10 14 2.4338e+00 1.3e-09 1.5e+00 2.4e-11 1.0e+00 4.4e+00 Yes

Variable x g Status
1 1.0000e+00 2.9535e-01 Lower Bound
2 -8.5233e-02 -5.8675e-10 Free
3 4.0930e-01 1.1735e-09 Free
4 1.0000e+00 5.9070e+00 Lower Bound

3.e04lbc.18 [NP3275/5/pdf]

